Emergent Chiral Spin Liquid: Fractional Quantum Hall Effect in a Kagome Heisenberg Mode!:
Supplementary Information

Shou-Shu Gong, Wei Zhu, and D. N. Sheng
Department of Physics and Astronomy, California Sate University, Northridge, California 91330, USA.

I. TOPOLOGICAL DEGENERATE GROUND-STATE ENERGY

In the gapped topological states, the ground-state ersengidifferent topological sectors are near degenerate ate-fin
size systems. With the increase of the system width, theréifice of the near degenerate energies vanishes expdgentia
In the density-matrix renormalization group (DMRG) caktidns, we obtain the bulk energy per site in both the vacuum
(EY/N) and spinon(Ey /N)sectors by subtracting the energies of two long cylindeth wifferent system lengths in each
sector.(EY — EV)/N describes the difference of the ground-state energiesfareint topological sectors.

Here, we show the results fof' = 0.5 on L,, = 4 cylinder in Suppl. Tablel. By keeping the unconverge®d00 SU (2)
states, we find a small energy differeric@0008. And with increasing kept states, the difference contirtaetecrease. For the
well converged ground states with the DMRG truncation errerl x 107 by keepings000 SU (2) states, we show the energy
difference is0.00001, which is consistent with the exact diagonalization resshown below and the topological degeneracy
in the system. This energy splittifig00001 is much smaller than that in the nearest-neighbor (NN) kagbiegisenberg model
0.00069.

II. TOPOLOGICAL ENTANGLEMENT ENTROPY

For the gapped quantum states with topological order, thelégical entanglement entropy (TEE)is proposed to char-
acterize the non-local entanglement. The Renyi entropy sdilzsystemA with reduced density matrix4 are defined as
S, = (1 —n)~tIn(Trp?), where then — 1 limit gives the Von Neuman entropy. For a topologically aetéstate, Renyi
entropy has the forny,, = oL — ~, whereL is the boundary of the subsystem, and all other terms vanitteilargeL limit;

« is a non-universal constant, while a positivés a correction to the area law of entanglement and reaches/arsial value
determined by total quantum dimensibrof quasiparticle excitations gs= In D. For ther = 1/2 Laughlin state, the quantum
dimension of each quasiparticlelisleading to the total dimensiaR = v/2 and thus the TEE = In 2/2.

By using the complex number DMRG simulations, we obtain theimmal entropy state (MES) with spontaneously broken
time-reversal symmetry and the corresponding Von Neumgmegfement entropy. With the help of ti#§/(2) DMRG, we
could obtain the converged entropy fby, = 3,4, 5 cylinders. ForL, = 6 cylinder, we cannot get the converged entropy
because the required DMRG optimal state numldgg; ) is beyond our computation abilities. Thus, to find an estiomaof
the entropy on,, = 6 cylinder, we study the entropy versiigMsy ) as shown in Figl(a), and make a careful extrapolation
of the data to estimate the converged result. Foe 0.5, we find the entropy = 4.49 + 0.02. In Fig. 1(b), we make a linear
fitting of the entropy data fok,, = 4, 5, 6 cylinders atJ’ = 0.5, and find the TEE, = 0.34 & 0.04, which is consistent with the
TEE of thev = 1/2 Laughlin statey = In2/2.

1. SPIN-SPIN CORRELATION FUNCTION

For a gapped topological chiral spin liquid (CSL), the systs expected to have a short-range spin correlation. Weuneas
the spin-spin correlation function on the cylinders with = 4 and6 for both vacuum and spinon sectors. We demonstrate

J =05,L,=4| EY/N | E{/N |(Ef — EY)/N
Msy(2) = 2000 |—0.46046|—0.46038|  0.00008
Msy(2) = 4000 |—0.46050| —0.46048|  0.00002
Msy(2) = 5000 |—0.46052|—0.46051|  0.00001

TABLE |: Degenerate ground-state energies in the different topological sectors. The ground-state energy per site in both the vacuum
(EY/N) and spinon £ /N) sectors, as well as the energy difference between the tetors¢ 5y — EY)/N for J' = 0.5 on theL, = 4
cylinder. To avoid edge effects, these bulk energies amdd by subtracting the energies of two long cylinders witferent system lengths.
Mguy2) is the keptSU (2) states.
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FIG. 1: Topological entanglement entropy. (a) Entanglement entrogy versus DMRG optimal state number invels@/sy ) for J' = 0.5

on L, = 6 cylinder. The DMRG entropy is for the MES, which is obtainedni the complex number DMRG simulations. The data are
fitted using the formuled' = a + b/Mgy(2) + c/MSQU(Q) + d/MSU(Q), from which we find the convergent entrogy= 4.49 + 0.02. (b)
Entanglement entropy versus system width.for= 0.5. By a linear fitting of the results fok,, = 4, 5, 6, we find the TEEy = 0.34 4 0.04,
where the error bar is from the uncertainty of the entropy.gn= 6 cylinder as shown in (a). The TEE we find is consistent withrésault of
ther = 1/2 Laughlin statey = In2/2.

(S; - S;) with sitei in the center of lattice angflalong the same row from the bulk to the boundary.foe= 0.5 in Suppl. Fig.2.
The spin correlations exhibit the exponential decay in attuum and spinon sectors. And the decay length does netiser
with growing L,, from 4 to 6, which suggests that the spin correlation length is closataration with growing system width.
This observation is consistent with a vanishing magnetieor

1V.  VALENCE-BOND SOLID ORDER
To investigate the possible valence-bond solid (VBS) grderstudy the dimer-dimer correlation function on cylingigstems,
which is defined as
D gy ety = A(Si - S5)(Sk - S)) = (Si - Si)(Sk - S, 1)

where(i, j) and(k, 1) represent the nearest-neighbor (NN) bonds. First of alld@monstrate the real space distributions of the
NN bond energies on cylinder systems. To clearly show théultons of the NN bond energies, we define the bond texture as
the bond energies subtracting a constamthich is the average NN bond energy in the bulk of cylinder, B; ; = (S;-S;) —e.
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FIG. 2: Spin-Spin correlation function. Log-linear plot of the absolute value of the spin-spin etation function versus the distance of sites
|i —jlon3 x 24 x 4 and3 x 24 x 6 cylinders forJ’ = 0.5 in (a) vacuum and (b) S-sectors. The referenceiditdocated in the center of
cylinder, and sitg is chosen along the same row from the bulk to the boundary.

As shown in Suppl. Fig3 of the bond textures ahix 16 x 4 cylinders forJ’ = 0.5 in the vacuum sector, we obtain the uniform
bond textures along both theandy directions in the bulk of cylinders. The small difference$een the: andy bond textures
0.01 and0.004 in Suppl. Figs.3(a) and3(b) are owing to the long cylinder geometry, which breakdafige rotation symmetry.
The uniform bond textures indicate the good convergenceob®RG results.

With the uniform bond textures in the bulk, we could furthierdy the dimer-dimer correlation functions. We set theneriee
bond(i, 7) in the middle of cylinder. Suppl. Figt shows the dimer-dimer correlations on the 16 x 4 cylinders atJ’ = 0.5
in the vacuum sector. The black bond in the middle denotesefieeence bondi, j), and the red and blue bonds indicate the
negative and positive dimer correlations, respectivelg.show that the dimer-dimer correlations decay quite faseto in both
x andy directions. On th& x 18 x 6 cylinders, the dimer correlations have a similar fast dedde significant short-range
dimer correlations strongly indicate the vanishing VBSeord

For J’ > 0.8, we find a strong VBS state with breaking lattice translal®ymmetry in the system. As demonstrated in
Suppl. Fig.5 of the bond textures at’ = 1.0 on a3 x 16 x 4 cylinder, the horizontal NN bond textures are not unifornthia
bulk of cylinder but have a difference 601, and the tilt bonds along the vertical direction also havéfarénce o0f0.01, which
are quite different from the uniform state in the CSL phasshemsvn in Suppl. Fig3(b). These observations indicate that we
find the ground state with lattice translational symmetgaiing in both the: andy directions.



a. Lx=16, Ly=4, J'=0.5, bond texture

FIG. 3: Nearest-neighbor bond texturesat J' = 0.5. The NN bond texture®; ; on the3 x 16 x 4 cylinders atJ’ = 0.5 in the vacuum
sector. The numbers denote the amplitudes of bond tefuye= (S; - S;) — e, wheree is the average NN bond energy in the bulk of cylinder.
Here, we finde = —0.212 and—0.210 for (a) and(b), respectively. The blue (red) color represents the pes{tiegative) bond texture.

a. Lx=16, Ly=4, J'=0.5, dimer-dimer correlation function
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b. Ix=16, Ly=4, J'=0.5, dimer-dimer correlat
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FIG. 4: Dimer-Dimer correlation function at .J’ = 0.5. Dimer-Dimer correlation fo/’ = 0.5 on the3 x 16 x 4 cylinders in the vacuum
sector. The black bond in the middle of cylinder denotes é¢fierence bondi, 7). The blue and red bonds represent the positive and negative
dimer correlations, respectively.
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FIG. 5: Nearest-neighbor bond texturesat J' = 1.0. The NN bond texture®3; ; on the3 x 16 x 4 cylinder atJ’ = 1.0. The numbers
denote the amplitudes of bond textuBg; = (S; - S;) — e, wheree is the average of the horizontal NN bond energy in the bulkybhder.
Here, we finde = —0.0385. The blue (red) color represents the positive (negativaglliexture.
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FIG. 6: Chiral-Chiral correlation function. The improvement of chiral-chiral correlation functionttvithe growing DMRG optimal states
for a3 x 18 x 6 cylinder atJ’ = 0.2 in the vacuum sectorMsy 2y is the keptSU(2) states for obtaining the different chiral correlations,
which are equivalent to abo8200, 6400, 10000, 18000, and24000 U (1) states.

V. CHIRAL-CHIRAL CORRELATION FUNCTION

In the DMRG calculations of chiral-chiral correlation fuimn, the systems near phase boundaries require much mpre ke
states than in deep of the CSL region to capture the longereligal correlations. As shown in Suppl. F&jof the improvement
of chiral correlation function with the growing DMRG keptagts for aV = 3 x 18 x 6 cylinder atJ’ = 0.2 in the vacuum
sector, the system shows a fast exponential decay chinalation by keeping00 SU (2) states (equivalent to abog200 U (1)
states), and with increasing kept states the decay lengitinces to grow. When keepint500 SU(2) states (equivalent to
about18000 U (1) states), the chiral correlations form a long-range cotigia Meanwhile, we only need to keep abda0000
U (1) states to uncover the long-range chiral correlations impadée¢he CSL region such as dt = 0.4, 0.5. Therefore, the less
convergent DMRG calculations may find a narrower CSL phagiemne

VI. EXACT DIAGONALIZATION RESULTS
A. Lowest-Energy spectrum for 36-sitestorus

We calculate the low-energy spectrum of the- J' model on a36 sites kagome lattice using exact-diagonalization (ED)
method. We consider a finite system with periodic boundandimns, as shown in Suppl. Fig(a). For this geometry, the
two-fold topological degeneracy of the= 1/2 FQHE are expected to live in the momentum seclors (0,0) and (0, ).
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FIG. 7: (a) Geometry of th86 sites kagome lattice with lattice constatit, @>. (b) Low-energy spectrum in the momentum spéice-
(0,0), (0,7) atJ’ = 0.6.

Thus we obtain the low-energy spectrum in these two momestumspaces. As shown in Suppl. Figb) of the spectrum
atJ’ = 0.6, we find that two lowest states for each momentum sector,tddrtlyEf:O(”), E;“:O(”), are well separated from
the continuum of other excitations by a gap that is alibii. The nearly vanishing energy difference between two ssctor
E?(z) — Ef@) = 0.0007(0.0022) indicates the emergence of the many-body magnetic tramsésymmetry. The existence of
the two lowest states in each sector is due to the time rev@nsanetry. Therefore, our ED calculations imply that theteyn
has four-fold degeneracy of ground states, where two of taenirom topological degeneracy and two are from time ralers

symmetry.

B. Modular matrix

The information of quantum dimension and fusion rules ofghasiparticles are encoded in the moddanatrix. To extract
the modulasS matrix in our model, we use the method of searching the mihém&opy states (MESSs) to construct the modular
matrix. In this method, we first calculate the entanglematropy through partitioning the full torus system into twisystems
(cylinders)A and B then tracing out the subsysteh Here we consider two noncontractible bipartitions on $aggometry as
shaded by light green and brown in Suppl. Ffg), which is along the lattice vectoss, d., respectively.

We denote the four groundstates from ED calculation as,

[0, [0E=0), 0=, [wh=T). )

Here, each wavefunction is being chosen as a real one. Adllibee four groundstates preserve the time reversal symaedr
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FIG. 8: Entropy for the superposition state) = c|1/3,’§:0> +v1-— c%/?f:") for the partition along (ag:-direction and (b).-direction.
The black arrows show parameters for the MESs.

show a vanishing chiral order. According to the discussinmsain text, we can construct the chiral states in each sasto

3559y = %uwi’:"mw@ﬂ» 3)
35y = %uwi’:%ww) ()

whereL(R) represents the left (right) chirality. ) )
Then we use two chiral states with the same chirality, fongxe |/¥=°) and |)¥="), to calculate the modular matrix. We
search for the MESs in the space of the groundstate manigiidyshe following superposition wavefunction:

) = cld°) + V1= e T),

wherec € [0, 1] and¢ € [0, 2] are the superposition parameters. In our calculation, vektfiat the global MESs take = 0.
As shown in Suppl. Fig8, the two orthogonal MESs along -direction are respectively locatedat: % andc = —%, while

the MESs along.-direction occur at: = 0, 1. Therefore, we have two MESs along-direction

2o = %Mzmmwx (5)
0y = (|950) — [T, ©)

S

2



and the two MESs along,-direction,

EP) = [0, (7)
25%) = [9F 7). ®)
The modulaiS matrix is obtained from the overlaps between the MESs ofwlertoncontractible partition directions:
1 1 1
S — E(ll EGQ _ , 9
E"E™) = 5 ( - ) ©)

which is consistent with the prediction 6/ (2); conformal field theory about the = 1/2 bosonic Laughlin state. Through
the modular matrix above, we can extract the individual quiandimensioniyg , = 1 for quasiparticlell(s) and the fusion
rulesl x 1 =1,1 x s = s, s x s = 1, which also determine the characteristic semion stesisti thes quasiparticle.
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